Pacemaker Programming and Follow up in Children and CHD Patients

Department of Pediatrics,

Kyungpook National University School of Medicine

Kim Yeo Hyang

Introduction

- Major differences in the etiology of AV block in children and adults
- Same pacing systems and leads in both age groups
- Patient size, body growth, coexistence of CHD, presence of residual intracardiac shunts and life style
- Understanding of modern pacing system

- Selecting a Pacing System
- Programming of the Device
- Pacemaker Follow Up Procedure
- Echocardiographic follow-up

Selecting a Pacing System

- Transvenous (endocardial) or surgical (epicardial) route
- The choice of route is dependent upon

size of the patient,

anatomy,

surgical procedures performed

Epicardial Lead Implantation

- < 15 kg
- patients with intracardiac shunt lesions
- patients with limited access to the atrium or the ventricle (single ventricular physiology, post Fontan palliation)
- patients with prosthetic tricuspid valves
- Dual chamber epicardial pacemakers : over 3 kg

Advantages

Preservation of the venous access for future use

Disadvantages

- sternotomy or thoracotomy or subxiphoid approach
- higher chronic stimulation threshold
- higher lead failures and fractures
- early depletion of battery life

Endocardial Lead Implantation

Advantages

- avoidance of thoracotomy
- lower pacing thresholds
- lower incidence of lead fractures

Disadvantages

- greater risk of lead dislodgment
- venous occlusion
- embolic vascular events, endocarditis

Single vs Dual Chamber Device

- AV synchronous pacing
- Pacemaker syndrome

Unipolar and Bipolar Leads

- recent advances in lead design
- the marginal differences between unipolar and bipolar leads

Specific Considerations

- Dual chamber system in patients with ventricular dysfunction with or without CHD
- Epicardial pacing system to the heart after the Fontan procedure + AV synchrony
- Epicardial pacing system to the heart with intracardiac right-to-left shunting
- Patient size and somatic growth

_

Programming of the Device

Choice of Stimulation Mode

- AV node conduction
- dual chamber pacemaker
- constant AV synchrony and sinus-based chronotropy

I	II	III	IV	V
Chamber(s) Paced	Chamber(s) Sensed	Response to Sensing	Rate Modulation	Multisite Pacing
O = None	O = None	O = None	O = None	O = None
A = Atrium	A = Atrium	T = Triggered	R = Rate modulation	A = Atrium
V = Ventricle	V = Ventricle	I = Inhibited		V = Ventricle
D = Dual (A + V)	D = Dual (A + V)	D = Dual (T + I)		D = Dual (A + V)
$\mathbf{S} = \text{Single} (\text{A or V})$	S = Single (A or V)			

Pacemaker Patient Follow-up

Follow up Interval

- prior to discharge
- in 1–2 weeks for incision check
- 2–3 months to assess chronic pacing thresholds and cardiac function (because of the risk of pacing-induced cardiac dysfunction)
- every 6 months
- any change in clinical status occurs

Pacemaker Follow-up Steps

- Evaluating the device
 - Determine the battery voltage
 - Check the lead impedance
 - Test capture thresholds
 - Test sensing thresholds
 - Perform a magnet/non-magnet test
- Underlying rhythm

Optimizing Pacemakers for Patients

 <u>Always</u> evaluate the rate histograms

<u>Always</u> evaluate for the presence of arrhythmia

 <u>Always</u> evaluate the percent pacing

Complications

Lead Complication

- lead fracture
- dislodgement
- high thresholds
- insulation break
- epicardial vs endocardial leads

Risk Factors for Lead Failures

- younger age at implant
- presence of congenital heart disease
- epicardial pacing leads

Prevention of Lead Complication

- routine and regular pacemaker interrogation
- routine chest radiography

7세 24kg 125cm

12세 45kg 154cm

Pacemaker Related Infections

- Before hospital discharge
- During early follow-up
- Down syndrome
- Revision of a pulse generator with or without pacemaker lead exchange
 - pacemaker-related infection 7.8%
 - superficial cellulitis 4.9%
 - deep pocket infection 2.3%
 - pacing lead infection
 0.5%

Postpericardiotomy Syndrome

- 2 6% of children following initial pacemaker implantation of both epicardial and transvenous lead systems
- Within 14 days after pacemaker placement : most
- Late onset : some

Pacing induced Ventricular Remodelling and Dysfunction

- Pacing from the RV apex
- LV dyssynchrony
- ventricular remodelling and dysfunction

Children with life-long pacing

Pacing Induced Ventricular Dyssynchrony

- disturbs myocardial regional workload and wall stress
- wall motion abnormalities
- myocardial perfusion defects
- changes in coronary blood flow
- increased left ventricular cavity volume
- asymmetrical changes in left ventricular wall thickness
- interstitial and cellular histopathological alterations

To Minimize Ventricular Pacing

- Identification of risk factors for pacing-induced cardiomyopathy
- Unravelling its pathogenesis
- Pacing strategies to avoid the adverse effects of right ventricular apical and lateral wall pacing
- Pacing strategies that reduce unnecessary ventricular pacing the cumulative percentage of ventricular pacing

Serial Echocardiographic Investigations

- Measuring LV dyssynchrony, regional and global ventricular function
- Conventional echocardiographic parameters are not sensitive
- Tissue Doppler echocardiography and Speckle tracking imaging

Conclusion

- Pacing in children : a safe and feasible therapy
- Selecting an appropriate pacemaker system : several patient-related and pacemaker-related issues
- Early establishment of AV synchrony
- Pacemaker-induced ventricular dysfunction and adverse remodelling

Thank you !!!